Asymmetrical Shape of Heliosphere Raises Questions

By Walter Cruttenden, July 7, 2008

Ever since the Voyager 2 data confirmed the nonsymmetrical shape of the solar system scientists have pondered its cause (i). In summary, the edge of the heliosphere (the place where the solar wind slows to sub sonic speeds) appears to be 1.2 billion kilometers shorter on the south side of the solar system (and in the general direction of the winter solstice, the direction of Voyager 2), than it is on the edge of the planetary plane (where Voyager 1 exited approximately a year earlier). This indicates the heliosphere is not a sphere at all but a bullet shape. More data is required to determine the exact shape in all directions.

The initial explanation was there must be some sort of gas cloud pressing against one side of our solar system. While this hypothesis is plausible there is another possibility that deserves consideration; stellar wind.

The sun’s solar winds are primarily driven by its magnetic field. When magnetic storms arise on the sun it produces coronal mass ejections (CME’s), which are like waves or ripples on the solar wind. The solar wind is constantly pushing on the daylight side of the earth’s magnetosphere squashing it in a pattern similar to the way the sun’s magnetic field seems to be squashed where Voyager 2 exited the solar system. Thus it is possible that the dented solar system might be due to the same type of cause; stellar winds from a not too distant star.

Some indication of this might reside in the data recently received by NASA’s sun-focused STEREO spacecraft. The twin STEREO spacecraft were launched in 2006 into earth’s orbit about the sun to obtain stereo pictures of the sun’s surface and to measure magnetic fields and ion fluxes associated with solar explosions. Between June and October 2007, the STEREO spacecraft detected atoms “originating from the same spot in the sky: the shock front and the heliosheath beyond, where the sun plunges through the interstellar medium”, and found “energetic neutral particles from beyond the heliosphere” that are moving toward the sun (ii). While this might be due to other causes such as “charge exchange between hot ions and neutral atoms” as hypothesized by scientists at UC Berkeley, it may also indicate the source of the asymmetrical solar system is due to the stellar wind from another star rather than an interstellar gas cloud. More data is needed and should be forthcoming with the pending launch of the Interstellar Boundary Explorer (IBEX), due to begin receiving data some time in the next year.

(i) Science Daily, Voyager 2 Proves Solar System is Squashed, December 13, 2007
(ii) E Science News, First Images of Solar System’s Invisible Frontier, July 2, 2008

Binary Research Institute.

Evidence mounts for sun’s companion star

Public release date: 24-Apr-2006

NEWPORT BEACH, CA (April 24, 2006) – The Binary Research Institute (BRI) has found that orbital characteristics of the recently discovered planetoid, “Sedna”, demonstrate the possibility that our sun might be part of a binary star system. A binary star system consists of two stars gravitationally bound orbiting a common center of mass. Once thought to be highly unusual, such systems are now considered to be common in the Milky Way galaxy.

Walter Cruttenden at BRI, Professor Richard Muller at UC Berkeley, Dr. Daniel Whitmire of the University of Louisiana, amongst several others, have long speculated on the possibility that our sun might have an as yet undiscovered companion. Most of the evidence has been statistical rather than physical. The recent discovery of Sedna, a small planet like object first detected by Cal Tech astronomer Dr. Michael Brown, provides what could be indirect physical evidence of a solar companion. Matching the recent findings by Dr. Brown, showing that Sedna moves in a highly unusual elliptical orbit, Cruttenden has determined that Sedna moves in resonance with previously published orbital data for a hypothetical companion star.

In the May 2006 issue of Discover, Dr. Brown stated: “Sedna shouldn’t be there. There’s no way to put Sedna where it is. It never comes close enough to be affected by the sun, but it never goes far enough away from the sun to be affected by other stars… Sedna is stuck, frozen in place; there’s no way to move it, basically there’s no way to put it there – unless it formed there. But it’s in a very elliptical orbit like that. It simply can’t be there. There’s no possible way – except it is. So how, then?”

“I’m thinking it was placed there in the earliest history of the solar system. I’m thinking it could have gotten there if there used to be stars a lot closer than they are now and those stars affected Sedna on the outer part of its orbit and then later on moved away. So I call Sedna a fossil record of the earliest solar system. Eventually, when other fossil records are found, Sedna will help tell us how the sun formed and the number of stars that were close to the sun when it formed.”

Walter Cruttenden agrees that Sedna’s highly elliptical orbit is very unusual, but noted that the orbit period of 12,000 years is in neat resonance with the expected orbit periodicity of a companion star as outlined in several prior papers. Consequently, Cruttenden believes that Sedna’s unusual orbit is something indicative of the current solar system configuration, not merely a historical record. “It is hard to imagine that Sedna would retain its highly elliptical orbit pattern since the beginning of the solar system billions of years ago. Because eccentricity would likely fade with time, it is logical to assume Sedna is telling us something about current, albeit unexpected solar system forces, most probably a companion star”.

Outside of a few popular articles, and Cruttenden’s book “Lost Star of Myth and Time”, which outlines historical references and the modern search for the elusive companion, the possibility of a binary partner star to our sun has been left to the halls of academia. But with Dr. Brown’s recent discoveries of Sedna and Xena, (now confirmed to be larger than Pluto), and timing observations like Cruttenden’s, the search for a companion star may be gaining momentum.

Contact: Heidi Hall
heidihallmedia@hotmail.com
949-399-0314
Binary Research Institute

###

Evidence mounts for sun’s companion star.