Asymmetrical Shape of Heliosphere Raises Questions

By Walter Cruttenden, July 7, 2008

Ever since the Voyager 2 data confirmed the nonsymmetrical shape of the solar system scientists have pondered its cause (i). In summary, the edge of the heliosphere (the place where the solar wind slows to sub sonic speeds) appears to be 1.2 billion kilometers shorter on the south side of the solar system (and in the general direction of the winter solstice, the direction of Voyager 2), than it is on the edge of the planetary plane (where Voyager 1 exited approximately a year earlier). This indicates the heliosphere is not a sphere at all but a bullet shape. More data is required to determine the exact shape in all directions.

The initial explanation was there must be some sort of gas cloud pressing against one side of our solar system. While this hypothesis is plausible there is another possibility that deserves consideration; stellar wind.

The sun’s solar winds are primarily driven by its magnetic field. When magnetic storms arise on the sun it produces coronal mass ejections (CME’s), which are like waves or ripples on the solar wind. The solar wind is constantly pushing on the daylight side of the earth’s magnetosphere squashing it in a pattern similar to the way the sun’s magnetic field seems to be squashed where Voyager 2 exited the solar system. Thus it is possible that the dented solar system might be due to the same type of cause; stellar winds from a not too distant star.

Some indication of this might reside in the data recently received by NASA’s sun-focused STEREO spacecraft. The twin STEREO spacecraft were launched in 2006 into earth’s orbit about the sun to obtain stereo pictures of the sun’s surface and to measure magnetic fields and ion fluxes associated with solar explosions. Between June and October 2007, the STEREO spacecraft detected atoms “originating from the same spot in the sky: the shock front and the heliosheath beyond, where the sun plunges through the interstellar medium”, and found “energetic neutral particles from beyond the heliosphere” that are moving toward the sun (ii). While this might be due to other causes such as “charge exchange between hot ions and neutral atoms” as hypothesized by scientists at UC Berkeley, it may also indicate the source of the asymmetrical solar system is due to the stellar wind from another star rather than an interstellar gas cloud. More data is needed and should be forthcoming with the pending launch of the Interstellar Boundary Explorer (IBEX), due to begin receiving data some time in the next year.

(i) Science Daily, Voyager 2 Proves Solar System is Squashed, December 13, 2007
(ii) E Science News, First Images of Solar System’s Invisible Frontier, July 2, 2008

Binary Research Institute.

Mysterious Objects at the Edge of the Electromagnetic Spectrum

March 16, 2012: The human eye is crucial to astronomy. Without the ability to see, the luminous universe of stars, planets and galaxies would be closed to us, unknown forever. Nevertheless, astronomers cannot shake their fascination with the invisible.

Outside the realm of human vision is an entire electromagnetic spectrum of wonders. Each type of light–­from radio waves to gamma-rays–reveals something unique about the universe. Some wavelengths are best for studying black holes; others reveal newborn stars and planets; while others illuminate the earliest years of cosmic history.

NASA has many telescopes “working the wavelengths” up and down the electromagnetic spectrum. One of them, the Fermi Gamma-Ray Telescope orbiting Earth, has just crossed a new electromagnetic frontier.

A new ScienceCast video takes viewers on a trip to the edge of the electromagnetic spectrum, where mysterious objects are puzzling astronomers.

“Fermi is picking up crazy-energetic photons,” says Dave Thompson, an astrophysicist at NASA’s Goddard Space Flight Center. “And it’s detecting so many of them we’ve been able to produce the first all-sky map of the very high energy universe.”

“This is what the sky looks like near the very edge of the electromagnetic spectrum, between 10 billion and 100 billion electron volts.”

The light we see with human eyes consists of photons with energies in the range 2 to 3 electron volts. The gamma-rays Fermi detects are billions of times more energetic, from 20 million to more than 300 billion electron volts. These gamma-ray photons are so energetic, they cannot be guided by the mirrors and lenses found in ordinary telescopes. Instead Fermi uses a sensor that is more like a Geiger counter than a telescope. If we could wear Fermi’s gamma ray “glasses,” we’d witness powerful bullets of energy – individual gamma rays – from cosmic phenomena such as supermassive black holes and hypernova explosions. The sky would be a frenzy of activity.

An artist’s concept of giant ‘Fermi bubbles’ emerging from the heart of the
Milky Way.

Before Fermi was launched in June 2008, there were only four known celestial sources of photons in this energy range. “In 3 years Fermi has found almost 500 more,” says Thompson.

What lies within this new realm?

“Mystery, for one thing,” says Thompson. “About a third of the new sources can’t be clearly linked to any of the known types of objects that produce gamma rays. We have no idea what they are.”

The rest have one thing in common: prodigious energy.

“Among them are super massive black holes called blazars; the seething remnants of supernova explosions; and rapidly rotating neutron stars called pulsars.”
And some of the gamma rays seem to come from the ‘Fermi bubbles’ – giant structures emanating from the Milky Way’s center and spanning some 20,000 light years above and below the galactic plane.

Exactly how these bubbles formed is another mystery.

Now that the first sky map is complete, Fermi is working on another, more sensitive and detailed survey.

“In the next few years, Fermi should reveal something new about all of these phenomena, what makes them tick, and why they generate such ‘unearthly’ levels of energy,” says David Paneque, a leader in this work from the Max Planck Institute in Germany.

For now, though, there are more unknowns than knowns about “Fermi’s world.”

Says Thompson: “It’s pretty exciting!”

Authors: Dauna Coulter, Dr. Tony Phillips | Credit: Science@NASA

Mysterious Objects at the Edge of the Electromagnetic Spectrum – NASA Science.

Evidence mounts for sun’s companion star

Public release date: 24-Apr-2006

NEWPORT BEACH, CA (April 24, 2006) – The Binary Research Institute (BRI) has found that orbital characteristics of the recently discovered planetoid, “Sedna”, demonstrate the possibility that our sun might be part of a binary star system. A binary star system consists of two stars gravitationally bound orbiting a common center of mass. Once thought to be highly unusual, such systems are now considered to be common in the Milky Way galaxy.

Walter Cruttenden at BRI, Professor Richard Muller at UC Berkeley, Dr. Daniel Whitmire of the University of Louisiana, amongst several others, have long speculated on the possibility that our sun might have an as yet undiscovered companion. Most of the evidence has been statistical rather than physical. The recent discovery of Sedna, a small planet like object first detected by Cal Tech astronomer Dr. Michael Brown, provides what could be indirect physical evidence of a solar companion. Matching the recent findings by Dr. Brown, showing that Sedna moves in a highly unusual elliptical orbit, Cruttenden has determined that Sedna moves in resonance with previously published orbital data for a hypothetical companion star.

In the May 2006 issue of Discover, Dr. Brown stated: “Sedna shouldn’t be there. There’s no way to put Sedna where it is. It never comes close enough to be affected by the sun, but it never goes far enough away from the sun to be affected by other stars… Sedna is stuck, frozen in place; there’s no way to move it, basically there’s no way to put it there – unless it formed there. But it’s in a very elliptical orbit like that. It simply can’t be there. There’s no possible way – except it is. So how, then?”

“I’m thinking it was placed there in the earliest history of the solar system. I’m thinking it could have gotten there if there used to be stars a lot closer than they are now and those stars affected Sedna on the outer part of its orbit and then later on moved away. So I call Sedna a fossil record of the earliest solar system. Eventually, when other fossil records are found, Sedna will help tell us how the sun formed and the number of stars that were close to the sun when it formed.”

Walter Cruttenden agrees that Sedna’s highly elliptical orbit is very unusual, but noted that the orbit period of 12,000 years is in neat resonance with the expected orbit periodicity of a companion star as outlined in several prior papers. Consequently, Cruttenden believes that Sedna’s unusual orbit is something indicative of the current solar system configuration, not merely a historical record. “It is hard to imagine that Sedna would retain its highly elliptical orbit pattern since the beginning of the solar system billions of years ago. Because eccentricity would likely fade with time, it is logical to assume Sedna is telling us something about current, albeit unexpected solar system forces, most probably a companion star”.

Outside of a few popular articles, and Cruttenden’s book “Lost Star of Myth and Time”, which outlines historical references and the modern search for the elusive companion, the possibility of a binary partner star to our sun has been left to the halls of academia. But with Dr. Brown’s recent discoveries of Sedna and Xena, (now confirmed to be larger than Pluto), and timing observations like Cruttenden’s, the search for a companion star may be gaining momentum.

Contact: Heidi Hall
Binary Research Institute


Evidence mounts for sun’s companion star.