Solar Storms Building Toward Peak in 2013, NASA Predicts

by Clara Moskowitz, Assistant Managing Editor
Date: 09 August 2011 Time: 05:06 PM ET

This image from the Solar Dynamics Observatory shows the X6.9 solar flare of Aug. 9, 2011 near the western limb (right edge) of the sun. CREDIT: NASA/SDO/

Solar flares like the huge one that erupted on the sun early today (Aug. 9) will only become more common as our sun nears its maximum level of activity in 2013, scientists say.

Tuesday’s flare was the most powerful sun storm since 2006, and was rated an X6.9 on the three-class scale for solar storms (X-Class is strongest, with M-Class in the middle and C-Class being the weakest).

Flares such as this one could become the norm soon, though, as our sun’s 11-year cycle of magnetic activity ramps up, scientists explained. The sun is just coming out of a lull, and scientists expect the next peak of activity in 2013. The current cycle, called Solar Cycle 24, began in 2008.

“We still are on the upswing with this recent burst of activity,” said Phil Chamberlin, a solar scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., who is a deputy project scientist for the agency’s Solar Dynamics Observatory, a sun-studying satellite that launched in February 2010. “We could definitely in the next year or two see more events like this; there’s a potential to see larger events as well.”

A more active sun

Earth got lucky with the most recent flare, which wasn’t pointed directly at Earth; therefore, it didn’t send the brunt of its charged particles toward us, but out into space. However, we may not be so fortunate in the future, experts warned.

“We’re in the new cycle, it is building and we’ll see events like this one,” said Joe Kunches, a space scientist with the National Oceanic and Atmospheric Administration (NOAA)’s Space Weather Prediction Center. “They’ll be much more commonplace and we’ll get more used to them.”

Spacecraft such as the Solar Dynamics Observatory (SDO), which recorded amazing videos of the Aug. 9 solar flare, and other observatories will be vital in monitoring the sun during its active phase, researchers said.

How sun storms form

Storms brew on the sun when pent-up energy from tangled magnetic field lines is released in the form of light, heat and charged particles. This can create a brightening on the sun called a flare, and is also often accompanied by the release of a cloud of plasma called a coronal mass ejection (CME).

These ejections are the part we Earthlings have to worry about.

As the CME careens through space, it can send a horde of charged particles toward our planet that can damage satellites, endanger astronauts in orbit, and interfere with power systems, communications and other infrastructure on the ground.

“We’re well aware of the difficulties and challenges,” Kunches told “We know more about the sun than we ever have.”

Can we predict solar storms?

When a big storm occurs, the Space Weather Prediction Center releases a warning to the U.S. Department of Homeland Security, emergency managers and agencies responsible for protecting power grids. Then power grids can distribute power and reduce their loads to protect themselves.

Satellite and power companies are also trying to design technology that can better withstand the higher radiation loads unleashed by solar storms.

Still, scientists would like to offer more advanced warnings when big storms are headed our way.

“We’re being reactive, we’re not being proactive,” Chamberlin said. “We don’t know how to predict these things, which would be nice.”

Chamberlin said solar science has come a long way in recent years, though, and the goal of SDO and other NASA projects is to improve our understanding of the sun and our ability to forecast space weather.

You can follow senior writer Clara Moskowitz on Twitter @ClaraMoskowitz. Follow for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

Solar Storms Building Toward Peak in 2013, NASA Predicts | Solar Flares & Storms | Space & Solar Weather |

Giant Breach in Earth’s Magnetic Field Discovered

Dec. 16, 2008: NASA’s five THEMIS spacecraft have discovered a breach in Earth’s magnetic field ten times larger than anything previously thought to exist. Solar wind can flow in through the opening to "load up" the magnetosphere for powerful geomagnetic storms. But the breach itself is not the biggest surprise. Researchers are even more amazed at the strange and unexpected way it forms, overturning long-held ideas of space physics.

"At first I didn’t believe it," says THEMIS project scientist David Sibeck of the Goddard Space Flight Center. "This finding fundamentally alters our understanding of the solar wind-magnetosphere interaction."

The magnetosphere is a bubble of magnetism that surrounds Earth and protects us from solar wind. Exploring the bubble is a key goal of the THEMIS mission, launched in February 2007. The big discovery came on June 3, 2007, when the five probes serendipitously flew through the breach just as it was opening. Onboard sensors recorded a torrent of solar wind particles streaming into the magnetosphere, signaling an event of unexpected size and importance.

“The opening was huge—four times wider than Earth itself,” says Wenhui Li, a space physicist at the University of New Hampshire who has been analyzing the data. Li’s colleague Jimmy Raeder, also of New Hampshire, says “1027 particles per second were flowing into the magnetosphere—that’s a 1 followed by 27 zeros. This kind of influx is an order of magnitude greater than what we thought was possible.”

The event began with little warning when a gentle gust of solar wind delivered a bundle of magnetic fields from the Sun to Earth. Like an octopus wrapping its tentacles around a big clam, solar magnetic fields draped themselves around the magnetosphere and cracked it open. The cracking was accomplished by means of a process called “magnetic reconnection.” High above Earth’s poles, solar and terrestrial magnetic fields linked up (reconnected) to form conduits for solar wind. Conduits over the Arctic and Antarctic quickly expanded; within minutes they overlapped over Earth’s equator to create the biggest magnetic breach ever recorded by Earth-orbiting spacecraft.

CLICK IMAGE FOR LARGER VIEW ~ A computer model of solar wind flowing around Earth's magnetic field on June 3, 2007. Background colors represent solar wind density; red is high density, blue is low. Solid black lines trace the outer boundaries of Earth's magnetic field. Note the layer of relatively dense material beneath the tips of the white arrows; that is solar wind entering Earth's magnetic field through the breach. Credit: Jimmy Raeder/UNH.

The size of the breach took researchers by surprise. “We’ve seen things like this before,” says Raeder, “but never on such a large scale. The entire day-side of the magnetosphere was open to the solar wind.”

The circumstances were even more surprising. Space physicists have long believed that holes in Earth’s magnetosphere open only in response to solar magnetic fields that point south. The great breach of June 2007, however, opened in response to a solar magnetic field that pointed north.

“To the lay person, this may sound like a quibble, but to a space physicist, it is almost seismic,” says Sibeck. “When I tell my colleagues, most react with skepticism, as if I’m trying to convince them that the sun rises in the west.”

Here is why they can’t believe their ears: The solar wind presses against Earth’s magnetosphere almost directly above the equator where our planet’s magnetic field points north. Suppose a bundle of solar magnetism comes along, and it points north, too. The two fields should reinforce one another, strengthening Earth’s magnetic defenses and slamming the door shut on the solar wind. In the language of space physics, a north-pointing solar magnetic field is called a “northern IMF” and it is synonymous with shields up!

“So, you can imagine our surprise when a northern IMF came along and shields went down instead,” says Sibeck. “This completely overturns our understanding of things.”

Northern IMF events don’t actually trigger geomagnetic storms, notes Raeder, but they do set the stage for storms by loading the magnetosphere with plasma. A loaded magnetosphere is primed for auroras, power outages, and other disturbances that can result when, say, a CME (coronal mass ejection) hits.

The years ahead could be especially lively. Raeder explains: “We’re entering Solar Cycle 24. For reasons not fully understood, CMEs in even-numbered solar cycles (like 24) tend to hit Earth with a leading edge that is magnetized north. Such a CME should open a breach and load the magnetosphere with plasma just before the storm gets underway. It’s the perfect sequence for a really big event.”

Sibeck agrees. “This could result in stronger geomagnetic storms than we have seen in many years.”

via Giant Breach in Earth’s Magnetic Field Discovered – NASA Science.